Расчетно-графическая работа по электротехнике. Примеры выполнения Электротехника примеры

Метод узловых и контурных уравнений

Составляем из заданных электроприёмников цепь с двумя узлами, как это показано на рисунке 3.3. Комплексная схема замещения такой цепи показана на рисунке 3.4.

 Сущность метода состоит в составлении  системы уравнений по пер­вому и второму законам Кирхгофа. Расчёт производим в следующем порядке.

По первому закону составляем (n – 1) независимых уравнений, где n – количество узлов в схеме. Выбираем узел А.. По второму закону нам остаётся составить два уравнения, так как число уравнений в системе должно быть равно количеству неизвестных токов, а их три. Направления токов в ветвях выбираются произвольно. Направления обхода контуров принимаем (услов- но) по часовой стрелке. Таким образом, система уравнений в комплексной

форме включает в себя одно уравнение, составленное по первому закону Кирхгофа и два уравнения, составленные по второму закону:

  I1 + I2 – I3 = 0;

 I1Z1 – I2Z2 = E1 – E2;

 I2Z2 + I3Z3 = E2.

  Рис. 3.3 Рис. 3.4

Подставляем заданные комплексы известных величин:

I1 + I2 – I3 = 0 (1);

I1 * (2 – j3) – I2 * (14 – j12) = 100 – 65 (2);

  I2 * (14 – j12) + I3 * j18 = 65 (3).

Данную систему легче решить с помощью простых подстановок: из (2) определяем I1, из (3) определяем I3:

I1 + I2 – I3 = 0;

I1 = (35+I2*(14-j12))/(2-j3) = 5,38 + j8,08+I2*(4,92+j1,38) (4); 

I3 = (65-I2*(14-j12))/j18 = –j3.61 – I2*(–0,667 – j0,778) (5).

Подставляем (4) и (5) в (1) и получим:

5,38 + j8,08 + I2*(4,92 + j1,38) + I2 + j3,61 + I2* (0,667 – j0,778) = 0;

5,38 + j8,08 + j3,61 = I2 * (–4,92 – j1,38 – 1 + 0,667 + j0,0778);

5,38 +j11,68 = I2 * (–5,253 – j0,602), отсюда

I2 =(5.38+j11.68)/(-5.253-j0.602) = –1,26 – j2,08 = 2,438e-j121,21 A;

I1 = 5,38 + j8,08 + (–1,26 – j2,08) * (4,92 + j1,38) = 2,05 – j3,89 = =4,4 *  A.

 I3 = –3,61 – (–1,26 – j2,08)*(–0,667 – j0,778) = 0,778 – j5,97 =

=6.02 *   A.

Составляем уравнение баланса мощностей в заданной электрической цепи. Определяем комплексные мощности источников:

SE1 = E1*= 100 * (2,05 + j3,89) = 205 + j389 = 440 * *В*A.;

SE2 = E2*= 65 * (–1,26 + j2,08) = –81,9 + j135 = 158 *B*A.

Определяем комплексные мощности приёмников электрической энергии:

 S1 = I12 * Z1 = 4,42 * (2 – j3) = 38,7 – j58,1  B*A;

 S2 = I22 * Z2 = 2,432 * (14 – j12) = 82,7 – j70,8 B*A;

 S3 = I32 * Z3 = 6,022 * (j18) = j652 B*A.

Уравнение баланса комплексных мощностей!

SЕ1 + SE2 = S1 + S2 + S3;

205 + j389 – 81,9 + j135 = 38,7 – j58,1 + 82,7 – j70,8 + j652;

 123,1 + j524 = 121,4 + j523, или

 538,3 *  = 536,9 * .

 Относительная погрешность в балансе полных мощностей составит:

YS = (538.3-536.9) * 100%/538.3 = 0,28% < 2%.


Угловая погрешность также незначительна.

Рисунок 3.5

 Для построения векторной диаграммы задаёмся масштабами токов MI = 1 А/см и э.д.с. ME = 10 В/см.

Векторная диаграмма в комплексной плоскости построена на рисунке 3.5.

РАСЧЕТ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ ПОСТОЯННОГО ТОКА С ОДНИМ ИСТОЧНИКОМ ПИТАНИЯ

Соединение источников и потребителей электроэнергии.

В рассмотренной ранее простейшей электрической цепи (см. рис. 1.3) генератор, электроприемник и связывающие их провода, по которым электрическая энергия передается от генератора к приемнику, соединены между собой последовательно. Этот способ соединения применяется для того, чтобы связать в общую электрическую систему разнохарактерные с энергетической точки зрения элементы цепи генераторы, электроприемники и линии передачи электрической энергии. Однородные в энергетическом отношении элементы системы, например генераторы или электроприемники, как правило, соединяются между собой параллельно. При таком способе соединения достигается относительная независимость в управлении и работе отдельных источников и потребителей электроэнергии. Между тем при последовательном соединении практически невозможно включать и отключать отдельно каждый генератор или электроприемник, а также устанавливать для любого из них требуемый режим, работы. Кроме того, при последовательном соединении приемников, например электрических ламп, перегорание одной из них влечет за собой погасание всех остальных.

Совместная параллельная работа генераторов на общую электрическую нагрузку имеет значительные преимущества в сравнении с раздельной работой каждого генератора на свою нагрузку. Во-первых, повышается надежность питания потребителей,

так как в случае аварийного отключения одного из генераторов оставшиеся в работе генераторы могут обеспечить бесперебойное электроснабжение наиболее ответственных нагрузок. Во-вторых, при параллельной работе можно в случае снижения нагрузки (например, в ночное время или в выходные дни) отключать часть генераторов, что повышает экономичность эксплуатации энергетических установок.

В тех случаях, когда один источник (например, электрохимический аккумулятор с э.д.с. Е = 1,25—2,4 В) не обеспечивает требуемого напряжения (110 или 220 В), приходится применять последовательное соединение однотипных источников.

Последовательное включение однотипных приемников (например, электрических ламп) применяется в исключительных случаях, когда напряжение источника значительно превышает номинальное напряжение отдельных электроприемников.

Законы Кирхгофа. При анализе и расчете электрических цепей, образуемых путем последовательного и параллельного соединения источников и потребителей электроэнергии, составляют электрическую схему, на которой показывают, как осуществляются эти соединения (рис 1.6).

Несколько последовательно соединенных элементов, по которым проходит один и тот же ток, образуют ветвь. В частном случае в ветви может быть лишь один элемент. Некоторые ветви (например, АВ, ANMF) содержат как сопротивления r, так и э.д.с. Е. Другие ветви (например, AD, DC, ВС) имеют только сопротивления r.

Расчет разветвленной электрической цепи постоянного тока

Для освоения методов предлагается рассчитать параметры электрической цепи, изображенной на рис. 1. Задача состоит в определении значений всех неизвестных токов и расчете падений напряжения на всех элементах электрической цепи.

Метод узловых потенциалов. Этим методом рекомендуется пользоваться в тех случаях, когда число уравнений в системе меньше числа уравнений, составленных по методу контурных токов. Число уравнений в системе при использовании метода узловых потенциалов равно n = NУ–1.

Метод наложения. В основе метода наложения лежит принцип суперпозиции, заключающийся в том, что ток в любой ветви электрической цепи можно рассчитать как алгебраическую сумму токов, вызываемых в ней от каждого источника в отдельности. Ток от отдельно взятого источника называется частным.

Метод эквивалентного генератора обычно используется тогда, когда требуется рассчитать ток в одной ветви цепи. В этом случае следует предположить, что выбранная ветвь подключена к некоторому источнику с ЭДС равному Еэкв и внутренним сопротивлением rэкв.

Расчет разветвленной электрической цепи переменного тока с использованием закона Ома. Целью данного задания является научиться применять закон Ома при расчетах электрических цепей переменного тока. При выполнении задания необходимо уметь пользоваться различными формами записи комплексных величин, описывающих электрическую цепь, а также применять эти записи для вычисления токов, падений напряжений на отдельных элементах электрической цепи и построении векторных диаграмм.

Пример Найти токораспределение в схеме

Дана схема, изображенная на рисунке 2.9. Напряжение  на зажимах цепи изменяется по закону: Определить: показание амперметра, закон изменения тока в цепи, построить векторную диаграмму.

Прежде, чем написать закон изменения тока в цепи, можно построить векторную диаграмму, из которой можно определить, опережает или отстает ток по фазе от приложенного напряжения.



Вернуться на Главную