Расчетно-графическая работа по электротехнике. Примеры выполнения Электротехника примеры

Расчёт трёхфазной цепи при соединении приемника в звезду

При расчёте несимметричной трехфазной цепи с потребителем, сое­динённым в звезду, схема может быть без нулевого провода или с нуле­вым проводом, который имеет комплексное сопротивление ZN. В обоих слу­чаях система линейных и фазных напряжений генератора симметричны. Сис­тема линейных напряжений нагрузки останется также симметричной, так как линейные провода не обладают сопротивлением. Но система фазных напряжений нагрузки несимметрична из-за наличия напряжения смещения ней­трали UN. Трехфазная цепь при соединении приёмника в звезду представ­ляет собой цепь с двумя узлами, расчёт подобных цепей наиболее целесообразно вести методом узлового напряжения.

Расчет трехфазной цепи с нулевым проводом

Схема заданной цепи изображена на рисунке 4.1. Определяем систе­му фазных напряжений генератора. Фазное напряжение:

UФ = Uл/ = 127 В.

Комплексные фазные напряжения генератора:

 UA = UФ = 127 B;

 UB = UA * = 127 * = –63,5 – j110 B;

 UC = UA * = 127 * = –63,5 + j110 B.

Определяем полные проводимости фаз приёмника:

 YA =  = 0,154 + j0,231 Cм;

 YB =  = 0,0412 + j0,0352 Cм;

 YC =  = –j0,0558 Cм; YN== j0.1 См.

Узловым напряжением является в данном случае напряжение смещения нейтрали, которое определяется по формуле:


UN=  =99.2-j24.5=102 *  B.

 Определяем фазные напряжения на нагрузке:

Рис 4.1

UA/ = UA – UN = 127 – (99.2-j24.5) = 27.8+j24.5=37.1 * B;

UB/ = UB – UN = (–63,5 – j110) – (99.2-j24.5) = -162.7-j85.5= =184 *B;

 UC/ = UC – UN = (–63,5 + j110) – (99.2-j24.5) = -162.7+j134.5 =

=211 * B.

 

Определяем токи в фазах нагрузки:

IA = UA/ * YA = (27.8+j24.5) * (0.154+j0.231) = -1.38+j10.2=10.3 * *A;

  IB = UB/ * YB = (-162.7-j85.5) * (0,0412 + j0,0352) = -3.69-j9.25=

=9.96 * A;

IC = UC/ * YC = (-162.7+j134.5) * (–j0,0556) = 7.48+j9.05=11.7 * *A;

  IN = UN * YN = (99.2-j24.5)*j0.1 = 2.45+j9.92 = 10.2 * A.

 Проверяем правильность определения токов по первому закону Кирхгофа для точки N’:

IA + IB + IC = IN;

Рис. 4.2

-1.38+j10.2-3.69-j9.25+7.48+j9.05=2.45+j9.92;

2.41+j10 @ 2.45+j9.92.

 Определяем комплексные мощности фаз и всей цепи:

SA = IA2 * Z1 = 10.22 * (2 – j3) = 212-j318=383 * B*A;

SB = IB2 * Z2 = 9.962 * (14 – j12) =1389-j1190=1829 * B*A;

 SC = IC2 * Z3 = 11.72 * (j18) = j2464=2464 * B*A;

S= SA + SB + SC = 212-J318+1389-j1190+j2464=1601+j956=

=1865 *B*A.

 Для построения векторной диаграммы задаёмся масштабами токов MI = 2 А/см и напряжений MU = 25 В/см. Векторная диаграмма на комплексной плоскости построена на рисунке 4.2.

Если на одном графике изображаются для совместного рассмотрения две синусоидальные функции, то разность их начальных фаз называют углом сдвига фаз или просто сдвигом фаз (φ). При сопоставлении напряжений и токов чаще всего определяют сдвиг фаз, вычитая из начальной фазы напряжения начальную фазу тока:

Определение сдвига фаз поясняется рисунком 2 .

5. Для оценки величин синусоидально изменяющихся тонов, э.д.с. и напряжений нельзя применять их средние значения, так как среднее за период значение любой синусоидальной величины равно нулю. В качестве оценки этих величин вводится так называемое действующее значение тока, э.д.с. или напряжения, например:

Можно  показать, что если переменная величина, в данном случае ток изменяется по синусоидальному закону, то

то есть  действующее значение тока равно максимальному, деленному на корень из двух.

Главное преимущество действующего значения синусоидально изменяющейся величины в том, что оно не зависит от времени, следовательно, его удобно изображать на графиках, с его помощью легко проводить всевозможные расчеты. Большинство электроизмерительных приборов сконструировано так, что они фиксируют именно действующие значения синусоидальных токов и напряжений.

Расчёт трёхфазной цепи при соединении приёмника в звезду без нулевого провода.

Расчёт неразветвлённой цепи с несинусоидальными напряжениями и токами

Третья гармоника

Примеры выполнения курсовой работы

Расчет методом узловых потенциалов

Комплексные амплитуды токов в ветвях цепи и соответственно вектор токов ветвей:

Расчет методом эквивалентного генератора

Расчет электрической цепи с взаимоиндуктивными связями методом контурных токов



Вернуться на Главную