Выполнение сборочных чертежей. Решение задач Машиностроительное черчение

Методы преобразования проекций. Вращение

Вращение прямой общего положения вокруг оси, перпендикулярной плоскости проекций до положения уровня и далее до проецирующего положения осуществляется

Последовательное вращение прямой общего положения вокруг двух осей, перпендикулярных плоскостям проекций до проецирующего положения можно осуществить сначала поворотом вокруг горизонтально-проецирующей оси до положения уровня

Вращение плоскости Для плоской фигуры важным является вращение ее до проецирующего положения и до положение уровня. Причем в проецирующее положение плоскость переводится одним вращением, в положение уровня - двойным вращением. Влияние температуры на напряжение и деформации в брусьях.

Определить наименее удаленную вершину многогранника от заданной плоскости. Данная постановка интерпретирует транспортную задачу нахождения оптимального плана расстановки судов на линии или то же самое задачу линейного программирования, в которой наилучшее решение определяется в ближайшей или наиболее удаленной вершине многогранника (области ограничений) минимизирующей функции (плоскости). Пусть плоскость задана следами (так чаще представляют плоскость в задачах линейного программирования).

Способ замены плоскостей проекции Суть метода состоит в задании новых изображений геометрических фигур удовлетворяющих определенным свойствам. Это может быть какой-либо дополнительный вид фигуры, натуральная величина какой-либо ее грани (например, для построения разверток) или других задач, типа определения угла между гранями, расстояние между двумя объектами и т.д.

Проецирование прямой линии в точку Пример. Задан отрезок прямой, занимающий положение горизонтали. Требуется подобрать направление проецирования и новую плоскость проекций на которую данный отрезок проецировался бы в точку.

Преобразование плоскости общего положения в проецирующую плоскость Данная задача может быть решена из определения: плоскость перпендикулярна другой плоскости, если она проходит через перпендикуляр к этой плоскости. Таким образом, если в заданной плоскости взять какую-либо прямую и последовательно преобразовать ее точку, то и плоскость в которой она лежит должна стать проецирующей (проецироваться-вырождаться в прямую)

Опреление натуральную величину плоского треугольника АВС общего положения Плоскость треугольника АВС является плоскостью общего положения, поэтому требуется две замены 1) преобразование в проецирующее положение и вторая замена в положение уровня. Данные преобразования по отдельности были выполнены выше и объединяя их получим схему преобразования

Введение. Позиционные и метрические задачи решаются проще, если геометрические фигуры занимают по отношению к плоскостям проекций частные положения (перпендикулярные или параллельные). Такое положения фигур можно достичь вращением их вокруг проецирующих, линий уровня или координатных осей. Последнее реализовано в системе CG-Вектор. И в тоже время следует заметить, что механизм вращение вокруг произвольной проецирующий оси можно, с помощью операций сдвига, свести к вращению вокруг координатных осей. Кроме того, иссследуя вращения проекций прямой (проекций перпендикуляра к плоскости) можно определить угол поворота образов до их частного положения. Итак система "CG-Вектор" инструмент, который позволяет вращать моделируемые фигуры на любой заданный угол вокруг по отдельности осей x, y, z.
В том и другом случае требуется научится преобразовывать:
1) Прямую общего положения:
- в прямую уровня (на изображении имеем натуральную величину отрезка) и
- в проецирующую прямую (на изображении прямая вырождается в точку в связи с чем многие метрические и позиционные задачи упрощаются).
2) Плоскость общего положения:
- в проецирующую плоскость (на изображении плоскость прямая вырождается в прямую линию и поэтому многие метрические и позиционные задачи также упрощаются) и
- в плоскость уровня (на изображении имеем натуральную величину плоской фигуры).

Графически способ вращения состоит в том, что объект вращают в пространстве вокруг выбранной оси до требуемого положения относительно плоскости проекций. Точки вращаемого объекта описывают дуги окружностей, лежащих в плоскостях, перпендикулярных к оси вращения, а центры этих окружностей располагаются на оси вращения, в пересечении плоскостей вращения с осью вращения. Поэтому при вращении важно определить ось вращения, плоскость вращения, орбиту вращения, центр вращения, радиус вращения и угол вращения. Примеры комплексных чертежей технических форм Каталог иллюстраций

Алгоритм вращения точки вокруг оси, перпендикулярной к плоскости проекций

Пусть это будет горизонтально проецирующая ось (ею может быть и ось z). Точка А(A',A'') при вращении перемещается в плоскости, параллельной плоскости Н, по дуге окружности, радиус R которой также параллелен плоскости Н и поэтому проецируется на плоскость Н без искажения. Таким образом, при вращении точки вокруг оси, перпендикулярной к одной из плоскостей проекций, проекция точки на этой плоскости перемещается по дуге окружности н.в радиуса вращения, проекция же точки на другой плоскости перемещается по прямой, параллельной оси проекции.

а) б)
Рис. 7.1. Алгоритм вращения точки вокруг горизонтально-проецирующей оси: а) в аксонометрии, б) на комплексном чертеже.


Вернуться на Главную